Objectives

• What is new about EC7 Ultimate Limit State Design?

• How does EC7 ULS design appear?
 – From the point of view of a user

• How can we best use EC7 ULS methods?
What has changed?

• Much of EC7 is little different from previous practice, e.g.:
 – SLS calculations with partial factors unity
 – SI practice

• The main change is in ULS design:
 – Formalises definition of ULS
 – Terminology:
 action, effect, resistance
 – Use of partial factors
Attributes of a New Design Code

• Comprehensiveness

• Ease of Use

• Consistency
 – Internal
 – With previous codes
 – With physical reality

• Leads to reliable and economic design

Some Perceptions

From Bond & Harris:
• Negative
 – “a cross between ‘the European Scream’ and the reaction of the ostrich”
 – Codification for codification’s sake
 – Too high a cost

• Positive
 – Opinions improved once people had had experience of EC7
Some Identified Problems

- Is passive pressure a resistance or a favourable action? (Bond & Harris)

- What strength should one use at ULS?

- Should water pressures be factored? (Brian Simpson)

- The single source principle – what does it mean? (CIRIA)

- Bond and Harris:
 - “The book deliberately presents a completely different running order from the Eurocodes so they can be explained more clearly” (My italics)

Example of Obscurity

- John Atkinson gave training sessions for Coffey

- He missed out the Model Factor ($\gamma_{R,d}$) for Pile Design by calculation

- After I drew his attention to it, it took him 20 minutes to find the reference in EC7, Even though he knew it must be there
Consistency with Physical Reality

Statics

Newton’s Laws

1. If a body is at rest, the sum of the forces acting on it must be zero

2. (Dynamics)

3. To every Action there is always opposed an equal Reaction

ULS Design

- For Limit State EQU:

 \[E_{\text{dst};d} \leq E_{\text{stb};d} \]

- For Limit State GEO

 \[E_d \leq R_d \]

- How does the inequality affect consistency with Newton’s Laws?
ULS Design

- For Limit State EQU:

\[E_{dst;d} \leq E_{stb;d} \]

- How does the inequality affect consistency with Newton’s Laws?

ULS in Practice

- Pile Design

\[R_d = Q_s + Q_b \]

- The resistances are not forces, they are capacities (maximum possible forces)
ULS in Practice

- Piping with upward water flow
- What is the safety factor?
- It depends on how you define it

- Total Stresses:
 - $FS = \gamma_b h_2 / \gamma_w h_1$

- Effective Stresses:
 - $FS = (\gamma_b h_2 - \gamma_w h_2) / (\gamma_w h_1 - \gamma_w h_2)$

- e.g. For $h_1 = 3$ m, $h_2 = 2$ m
 - $FS_T = 40/30 = 1.3$
 - $FS_E = 20/10 = 2$

ULS in Practice

- Cantilever Wall Design

- Problem of definition of safety factor was addressed during development of CIRIA 104
- We are used to using partial factors for strength
- The resistances depend on the actions
 and the actions depend upon the resistances
Problems with ULS Calculations

• Resistances are sometimes treated as forces, when in fact they are capacities
 – i.e resistances and actions interact

• This applies to any ULS calculation, (e.g. Global safety factors)
 not just EC7 (with partial factors)
 – We are used to this with global safety factors
 (e.g. Hydraulic uplift, cantilever walls, slopes)

 – Partial factors can make the problem more complex,
 but not intrinsically different

• A safety factor is still what you define it to be

Comparison of Global and Partial Safety Factor Methods

• Global safety factors are simpler,
 and therefore easier to get a feel for
 – For any particular problem
 and depending on how they are defined

• Partial factors allow better assessment of uncertainty
 (variation?) of real physical factors
 (e.g. Variable loadings, material strengths)
 – But how do the code factors relate to real variation?
 Have they just been chosen to fit previous codes?

• Thinking about partial factors has enabled better
 identification of inconsistencies in previous practice
Can we Simplify ULS in EC7?

- Reduce to two sheets of A4:

- All except piles & anchors:
 DA1:C1 \(A1 + M1 + R1 \)
 DA1:C2 \(A2 + M2 + R1 \)

- Piles and anchors:
 DA1:C1 \(A1 + M1 + R1 \)
 DA1:C2 \(A2 + M1 \) or \(M2 + R2 \)
 + Model Factor

- And write down what you have done!

Conclusions

- Partial Factors constitute the main new feature of EC7 ULS calculations

- ULS calculations have intrinsic difficulties

- We are used to them in global factor methods, but not yet in partial factor methods

- EC7 calculations can be made more straightforward
Acknowledgements

• John Atkinson
 – for Coffey training in EC7
 and for many useful discussions

• Colleagues at Coffey
 – for sitting through two rehearsals